===== Regression with PyTorch ===== %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from sklearn.utils import shuffle #Define the model import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from tqdm import tqdm from sklearn.datasets import load_boston boston = load_boston() print( "Type of boston dataset:", type(Boston)) boston_df = pd.DataFrame(boston['data'] ) boston_df.columns = boston['feature_names'] boston_df['PRICE']= boston['target'] sns.distplot(boston_df['PRICE']); sns.pairplot(boston_df); from sklearn.model_selection import train_test_split y = boston_df['PRICE'] X = boston_df.iloc[:,0:13] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) X_train=X_train.values y_train=y_train.values X_test=X_test.values y_test=y_test.values batch_size = 50 num_epochs = 200 learning_rate = 0.01 size_hidden= 100 batch_no = len(X_train) // batch_size #batches cols=X_train.shape[1] #Number of columns in input matrix n_output=1 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("Executing the model on :",device) class Net(torch.nn.Module): def __init__(self, n_feature, size_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(cols, size_hidden) self.predict = torch.nn.Linear(size_hidden, n_output) def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x model = Net(cols, size_hidden, n_output) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) criterion = torch.nn.MSELoss(reduction='sum') loss_train_history = [] loss_test_history = [] loss_test_records = [] for epoch in tqdm(range(num_epochs)): running_loss = 0.0 X_train, y_train = shuffle(X_train, y_train) for i in range(batch_no): start = i * batch_size end = start + batch_size inputs = Variable(torch.FloatTensor(X_train[start:end])) labels = Variable(torch.FloatTensor(y_train[start:end])) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, torch.unsqueeze(labels,dim=1)) loss.backward() optimizer.step() running_loss += loss.item() loss_train_history.append(running_loss) inputs = Variable(torch.FloatTensor(X_test)) outputs = model(inputs) labels = Variable(torch.FloatTensor(y_test)) loss = criterion(outputs, torch.unsqueeze(labels,dim=1)) loss_test_history.append(loss.item()) if min(loss_test_history) == loss_test_history[-1]: model_path = 'model.pth' torch.save(model.state_dict(), model_path) loss_test_records.append(epoch) model.load_state_dict(torch.load(model_path)) fig, ax = plt.subplots() ax.plot(loss_train_history, color="blue") ax.plot(loss_test_history, color="red") plt.show() fig, ax = plt.subplots() ax.plot(loss_train_history, color="blue") ax.plot(loss_test_history, color="red") plt.ylim(0, 8000) plt.show() plt.plot(loss_test_records) plt.show() from sklearn.metrics import r2_score X = Variable(torch.FloatTensor(X_train)) result = model(X) pred=result.data[:,0].numpy() print(len(pred),len(y_train)) print(r2_score(pred,y_train)) X = Variable(torch.FloatTensor(X_test)) result = model(X) pred=result.data[:,0].numpy() print(len(pred),len(y_test)) print(r2_score(pred,y_test))