データマイニング

  • 6月1日にお願いしたアンケートはこちらです。ご協力宜しくお願いします。
  • 6月22日に出題したレポート課題は次の通りです。締め切りは7月6日です。西5号館3階のJ専攻事務室前に教員宛のポストがあります。上から3段目、右から2つめの「山本」というポストに投函してください。
    • 自分の研究もしくは自分の研究室の先輩の研究を説明し、その研究の有効性や他の研究と比較して優越性を示すためのデータと比較基準を紹介してください。データの選定方法(もしくは指定の経緯)と、比較基準の意味を合わせて説明してください。
    • 講義で紹介した、予測誤差の推定という考え方を自分の研究に照らし、適用可能かを論じなさい。適用可能でなければ、そもそも自分の研究には予測誤差という概念が不要かどうかについて、適用可能であれば、どのように適用できるかについて、それぞれ併せて論じなさい。
  • 7月27日は講義をしないと宣言しましたが、授業評価アンケートを実施しないといけないので、一応やります。ただし課題の説明だけに留めますので、10時からとさせてください。また出席できない人は、同じ内容をここにも掲載しますので、それをご参照ください。

およその講義内容の振り返りをしてもらいます。下記のコードを動かし、次のように分類しなさい。

線形・加法に近い手法非線形な手法より複雑な手法
軽い手法(時間がかからない)
重い手法(時間がかかる)
Rのインストール

Rの処理系はRプロジェクトが配布しているRが本家で、近年はこれと完全なバイナリ互換を実現しているMicrosoft R Openもある。後者の方が、マルチスレッドに対応しているので、コア数に余裕があるマシンを使用している場合には、後者を勧める。

またRStudioを併用することも勧める。上記のいずれかのRをインストールしたのちに、RStudioをインストールするだけでよく、設定は不要である。

macOS Sierraになると、コマンドラインツールが消されるようだ。install.packages()を実行して、xcrunがないという趣旨のエラーが表示されたら、ターミナルで次のコマンドを実行すると良い。

sudo xcode-select --install
時間の計測手段

動作時間は、任意の行の間に Sys.time() という関数を実行すると、表示できる。

time.begin <- Sys.time()
b <- 0
for( i in c(1:100000) ) {
  b <- b+1
}
time.end <- Sys.time()
print(time.end-time.begin)

のように実行文を挟むと、間の時間を秒数で返してくれる。

以下、演習用のコード
# Chapter 2 Lab: Introduction to R

# Basic Commands

x <- c(1,3,2,5)
x
x = c(1,6,2)
x
y = c(1,4,3)
length(x)
length(y)
x+y
ls()
rm(x,y)
ls()
rm(list=ls())
?matrix
x=matrix(data=c(1,2,3,4), nrow=2, ncol=2)
x
x=matrix(c(1,2,3,4),2,2)
matrix(c(1,2,3,4),2,2,byrow=TRUE)
sqrt(x)
x^2
x=rnorm(50)
y=x+rnorm(50,mean=50,sd=.1)
cor(x,y)
set.seed(1303)
rnorm(50)
set.seed(3)
y=rnorm(100)
mean(y)
var(y)
sqrt(var(y))
sd(y)

# Graphics

x=rnorm(100)
y=rnorm(100)
plot(x,y)
plot(x,y,xlab="this is the x-axis",ylab="this is the y-axis",main="Plot of X vs Y")
pdf("Figure.pdf")
plot(x,y,col="green")
dev.off()
x=seq(1,10)
x
x=1:10
x
x=seq(-pi,pi,length=50)
y=x
f=outer(x,y,function(x,y)cos(y)/(1+x^2))
contour(x,y,f)
contour(x,y,f,nlevels=45,add=T)
fa=(f-t(f))/2
contour(x,y,fa,nlevels=15)
image(x,y,fa)
persp(x,y,fa)
persp(x,y,fa,theta=30)
persp(x,y,fa,theta=30,phi=20)
persp(x,y,fa,theta=30,phi=70)
persp(x,y,fa,theta=30,phi=40)

# Indexing Data

A=matrix(1:16,4,4)
A
A[2,3]
A[c(1,3),c(2,4)]
A[1:3,2:4]
A[1:2,]
A[,1:2]
A[1,]
A[-c(1,3),]
A[-c(1,3),-c(1,3,4)]
dim(A)

# Loading Data

Auto=read.table("http://www-bcf.usc.edu/~gareth/ISL/Auto.data")
fix(Auto)
Auto=read.table("http://www-bcf.usc.edu/~gareth/ISL/Auto.data",header=T,na.strings="?")
fix(Auto)
Auto=read.csv("http://www-bcf.usc.edu/~gareth/ISL/Auto.csv",header=T,na.strings="?")
fix(Auto)
dim(Auto)
Auto[1:4,]
Auto=na.omit(Auto)
dim(Auto)
names(Auto)

# Additional Graphical and Numerical Summaries

plot(cylinders, mpg)
plot(Auto$cylinders, Auto$mpg)
attach(Auto)
plot(cylinders, mpg)
cylinders=as.factor(cylinders)
plot(cylinders, mpg)
plot(cylinders, mpg, col="red")
plot(cylinders, mpg, col="red", varwidth=T)
plot(cylinders, mpg, col="red", varwidth=T,horizontal=T)
plot(cylinders, mpg, col="red", varwidth=T, xlab="cylinders", ylab="MPG")
hist(mpg)
hist(mpg,col=2)
hist(mpg,col=2,breaks=15)
pairs(Auto)
pairs(~ mpg + displacement + horsepower + weight + acceleration, Auto)
plot(horsepower,mpg)
identify(horsepower,mpg,name)
summary(Auto)
summary(mpg)



# Chapter 3 Lab: Linear Regression

library(MASS)
install.packages("ISLR",dependencies=TRUE)
library(ISLR)

# Simple Linear Regression

fix(Boston)
names(Boston)
lm.fit=lm(medv~lstat)
lm.fit=lm(medv~lstat,data=Boston)
attach(Boston)
lm.fit=lm(medv~lstat)
lm.fit
summary(lm.fit)
names(lm.fit)
coef(lm.fit)
confint(lm.fit)
predict(lm.fit,data.frame(lstat=(c(5,10,15))), interval="confidence")
predict(lm.fit,data.frame(lstat=(c(5,10,15))), interval="prediction")
plot(lstat,medv)
abline(lm.fit)
abline(lm.fit,lwd=3)
abline(lm.fit,lwd=3,col="red")
plot(lstat,medv,col="red")
plot(lstat,medv,pch=20)
plot(lstat,medv,pch="+")
plot(1:20,1:20,pch=1:20)
par(mfrow=c(2,2))
plot(lm.fit)
plot(predict(lm.fit), residuals(lm.fit))
plot(predict(lm.fit), rstudent(lm.fit))
plot(hatvalues(lm.fit))
which.max(hatvalues(lm.fit))

# Multiple Linear Regression

lm.fit=lm(medv~lstat+age,data=Boston)
summary(lm.fit)
lm.fit=lm(medv~.,data=Boston)
summary(lm.fit)
library(car)
vif(lm.fit)
lm.fit1=lm(medv~.-age,data=Boston)
summary(lm.fit1)
lm.fit1=update(lm.fit, ~.-age)

# Interaction Terms

summary(lm(medv~lstat*age,data=Boston))

# Non-linear Transformations of the Predictors

lm.fit2=lm(medv~lstat+I(lstat^2))
summary(lm.fit2)
lm.fit=lm(medv~lstat)
anova(lm.fit,lm.fit2)
par(mfrow=c(2,2))
plot(lm.fit2)
lm.fit5=lm(medv~poly(lstat,5))
summary(lm.fit5)
summary(lm(medv~log(rm),data=Boston))

# Qualitative Predictors

fix(Carseats)
names(Carseats)
lm.fit=lm(Sales~.+Income:Advertising+Price:Age,data=Carseats)
summary(lm.fit)
attach(Carseats)
contrasts(ShelveLoc)

# Writing Functions

LoadLibraries
LoadLibraries()
LoadLibraries=function(){
  library(ISLR)
  library(MASS)
  print("The libraries have been loaded.")
}
LoadLibraries
LoadLibraries()


# Chapter 4 Lab: Logistic Regression, LDA, QDA, and KNN

# The Stock Market Data

library(ISLR)
names(Smarket)
dim(Smarket)
summary(Smarket)
pairs(Smarket)
cor(Smarket)
cor(Smarket[,-9])
attach(Smarket)
plot(Volume)

# Logistic Regression

glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data=Smarket,family=binomial)
summary(glm.fit)
coef(glm.fit)
summary(glm.fit)$coef
summary(glm.fit)$coef[,4]
glm.probs=predict(glm.fit,type="response")
glm.probs[1:10]
contrasts(Direction)
glm.pred=rep("Down",1250)
glm.pred[glm.probs>.5]="Up"
table(glm.pred,Direction)
(507+145)/1250
mean(glm.pred==Direction)
train=(Year<2005)
Smarket.2005=Smarket[!train,]
dim(Smarket.2005)
Direction.2005=Direction[!train]
glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data=Smarket,family=binomial,subset=train)
glm.probs=predict(glm.fit,Smarket.2005,type="response")
glm.pred=rep("Down",252)
glm.pred[glm.probs>.5]="Up"
table(glm.pred,Direction.2005)
mean(glm.pred==Direction.2005)
mean(glm.pred!=Direction.2005)
glm.fit=glm(Direction~Lag1+Lag2,data=Smarket,family=binomial,subset=train)
glm.probs=predict(glm.fit,Smarket.2005,type="response")
glm.pred=rep("Down",252)
glm.pred[glm.probs>.5]="Up"
table(glm.pred,Direction.2005)
mean(glm.pred==Direction.2005)
106/(106+76)
predict(glm.fit,newdata=data.frame(Lag1=c(1.2,1.5),Lag2=c(1.1,-0.8)),type="response")

# Linear Discriminant Analysis

library(MASS)
lda.fit=lda(Direction~Lag1+Lag2,data=Smarket,subset=train)
lda.fit
plot(lda.fit)
lda.pred=predict(lda.fit, Smarket.2005)
names(lda.pred)
lda.class=lda.pred$class
table(lda.class,Direction.2005)
mean(lda.class==Direction.2005)
sum(lda.pred$posterior[,1]>=.5)
sum(lda.pred$posterior[,1]<.5)
lda.pred$posterior[1:20,1]
lda.class[1:20]
sum(lda.pred$posterior[,1]>.9)

# Quadratic Discriminant Analysis

qda.fit=qda(Direction~Lag1+Lag2,data=Smarket,subset=train)
qda.fit
qda.class=predict(qda.fit,Smarket.2005)$class
table(qda.class,Direction.2005)
mean(qda.class==Direction.2005)

# K-Nearest Neighbors

library(class)
train.X=cbind(Lag1,Lag2)[train,]
test.X=cbind(Lag1,Lag2)[!train,]
train.Direction=Direction[train]
set.seed(1)
knn.pred=knn(train.X,test.X,train.Direction,k=1)
table(knn.pred,Direction.2005)
(83+43)/252
knn.pred=knn(train.X,test.X,train.Direction,k=3)
table(knn.pred,Direction.2005)
mean(knn.pred==Direction.2005)

# An Application to Caravan Insurance Data

dim(Caravan)
attach(Caravan)
summary(Purchase)
348/5822
standardized.X=scale(Caravan[,-86])
var(Caravan[,1])
var(Caravan[,2])
var(standardized.X[,1])
var(standardized.X[,2])
test=1:1000
train.X=standardized.X[-test,]
test.X=standardized.X[test,]
train.Y=Purchase[-test]
test.Y=Purchase[test]
set.seed(1)
knn.pred=knn(train.X,test.X,train.Y,k=1)
mean(test.Y!=knn.pred)
mean(test.Y!="No")
table(knn.pred,test.Y)
9/(68+9)
knn.pred=knn(train.X,test.X,train.Y,k=3)
table(knn.pred,test.Y)
5/26
knn.pred=knn(train.X,test.X,train.Y,k=5)
table(knn.pred,test.Y)
4/15
glm.fit=glm(Purchase~.,data=Caravan,family=binomial,subset=-test)
glm.probs=predict(glm.fit,Caravan[test,],type="response")
glm.pred=rep("No",1000)
glm.pred[glm.probs>.5]="Yes"
table(glm.pred,test.Y)
glm.pred=rep("No",1000)
glm.pred[glm.probs>.25]="Yes"
table(glm.pred,test.Y)
11/(22+11)



# Chaper 5 Lab: Cross-Validation and the Bootstrap

# The Validation Set Approach

library(ISLR)
set.seed(1)
train=sample(392,196)
lm.fit=lm(mpg~horsepower,data=Auto,subset=train)
attach(Auto)
mean((mpg-predict(lm.fit,Auto))[-train]^2)
lm.fit2=lm(mpg~poly(horsepower,2),data=Auto,subset=train)
mean((mpg-predict(lm.fit2,Auto))[-train]^2)
lm.fit3=lm(mpg~poly(horsepower,3),data=Auto,subset=train)
mean((mpg-predict(lm.fit3,Auto))[-train]^2)
set.seed(2)
train=sample(392,196)
lm.fit=lm(mpg~horsepower,subset=train)
mean((mpg-predict(lm.fit,Auto))[-train]^2)
lm.fit2=lm(mpg~poly(horsepower,2),data=Auto,subset=train)
mean((mpg-predict(lm.fit2,Auto))[-train]^2)
lm.fit3=lm(mpg~poly(horsepower,3),data=Auto,subset=train)
mean((mpg-predict(lm.fit3,Auto))[-train]^2)

# Leave-One-Out Cross-Validation

glm.fit=glm(mpg~horsepower,data=Auto)
coef(glm.fit)
lm.fit=lm(mpg~horsepower,data=Auto)
coef(lm.fit)
library(boot)
glm.fit=glm(mpg~horsepower,data=Auto)
cv.err=cv.glm(Auto,glm.fit)
cv.err$delta
cv.error=rep(0,5)
for (i in 1:5){
  glm.fit=glm(mpg~poly(horsepower,i),data=Auto)
  cv.error[i]=cv.glm(Auto,glm.fit)$delta[1]
}
cv.error

# k-Fold Cross-Validation

set.seed(17)
cv.error.10=rep(0,10)
for (i in 1:10){
  glm.fit=glm(mpg~poly(horsepower,i),data=Auto)
  cv.error.10[i]=cv.glm(Auto,glm.fit,K=10)$delta[1]
}
cv.error.10

# The Bootstrap

alpha.fn=function(data,index){
  X=data$X[index]
  Y=data$Y[index]
  return((var(Y)-cov(X,Y))/(var(X)+var(Y)-2*cov(X,Y)))
}
alpha.fn(Portfolio,1:100)
set.seed(1)
alpha.fn(Portfolio,sample(100,100,replace=T))
boot(Portfolio,alpha.fn,R=1000)

# Estimating the Accuracy of a Linear Regression Model

boot.fn=function(data,index)
  return(coef(lm(mpg~horsepower,data=data,subset=index)))
boot.fn(Auto,1:392)
set.seed(1)
boot.fn(Auto,sample(392,392,replace=T))
boot.fn(Auto,sample(392,392,replace=T))
boot(Auto,boot.fn,1000)
summary(lm(mpg~horsepower,data=Auto))$coef
boot.fn=function(data,index)
  coefficients(lm(mpg~horsepower+I(horsepower^2),data=data,subset=index))
set.seed(1)
boot(Auto,boot.fn,1000)
summary(lm(mpg~horsepower+I(horsepower^2),data=Auto))$coef



# Chapter 6 Lab 1: Subset Selection Methods

# Best Subset Selection

library(ISLR)
fix(Hitters)
names(Hitters)
dim(Hitters)
sum(is.na(Hitters$Salary))
Hitters=na.omit(Hitters)
dim(Hitters)
sum(is.na(Hitters))

install.packages("leaps",dependencies=TRUE)
library(leaps)
regfit.full=regsubsets(Salary~.,Hitters)
summary(regfit.full)
regfit.full=regsubsets(Salary~.,data=Hitters,nvmax=19)
reg.summary=summary(regfit.full)
names(reg.summary)
reg.summary$rsq
par(mfrow=c(2,2))
plot(reg.summary$rss,xlab="Number of Variables",ylab="RSS",type="l")
plot(reg.summary$adjr2,xlab="Number of Variables",ylab="Adjusted RSq",type="l")
which.max(reg.summary$adjr2)
points(11,reg.summary$adjr2[11], col="red",cex=2,pch=20)
plot(reg.summary$cp,xlab="Number of Variables",ylab="Cp",type='l')
which.min(reg.summary$cp)
points(10,reg.summary$cp[10],col="red",cex=2,pch=20)
which.min(reg.summary$bic)
plot(reg.summary$bic,xlab="Number of Variables",ylab="BIC",type='l')
points(6,reg.summary$bic[6],col="red",cex=2,pch=20)
plot(regfit.full,scale="r2")
plot(regfit.full,scale="adjr2")
plot(regfit.full,scale="Cp")
plot(regfit.full,scale="bic")
coef(regfit.full,6)

# Forward and Backward Stepwise Selection

regfit.fwd=regsubsets(Salary~.,data=Hitters,nvmax=19,method="forward")
summary(regfit.fwd)
regfit.bwd=regsubsets(Salary~.,data=Hitters,nvmax=19,method="backward")
summary(regfit.bwd)
coef(regfit.full,7)
coef(regfit.fwd,7)
coef(regfit.bwd,7)

# Choosing Among Models

set.seed(1)
train=sample(c(TRUE,FALSE), nrow(Hitters),rep=TRUE)
test=(!train)
regfit.best=regsubsets(Salary~.,data=Hitters[train,],nvmax=19)
test.mat=model.matrix(Salary~.,data=Hitters[test,])
val.errors=rep(NA,19)
for(i in 1:19){
  coefi=coef(regfit.best,id=i)
  pred=test.mat[,names(coefi)]%*%coefi
  val.errors[i]=mean((Hitters$Salary[test]-pred)^2)
}
val.errors
which.min(val.errors)
coef(regfit.best,10)
predict.regsubsets=function(object,newdata,id,...){
  form=as.formula(object$call[[2]])
  mat=model.matrix(form,newdata)
  coefi=coef(object,id=id)
  xvars=names(coefi)
  mat[,xvars]%*%coefi
}
regfit.best=regsubsets(Salary~.,data=Hitters,nvmax=19)
coef(regfit.best,10)
k=10
set.seed(1)
folds=sample(1:k,nrow(Hitters),replace=TRUE)
cv.errors=matrix(NA,k,19, dimnames=list(NULL, paste(1:19)))
for(j in 1:k){
  best.fit=regsubsets(Salary~.,data=Hitters[folds!=j,],nvmax=19)
  for(i in 1:19){
    pred=predict(best.fit,Hitters[folds==j,],id=i)
    cv.errors[j,i]=mean( (Hitters$Salary[folds==j]-pred)^2)
  }
}
mean.cv.errors=apply(cv.errors,2,mean)
mean.cv.errors
par(mfrow=c(1,1))
plot(mean.cv.errors,type='b')
reg.best=regsubsets(Salary~.,data=Hitters, nvmax=19)
coef(reg.best,11)


# Chapter 6 Lab 2: Ridge Regression and the Lasso

x=model.matrix(Salary~.,Hitters)[,-1]
y=Hitters$Salary

# Ridge Regression

install.packages("glmnet",dependencies=TRUE)
library(glmnet)
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x,y,alpha=0,lambda=grid)
dim(coef(ridge.mod))
ridge.mod$lambda[50]
coef(ridge.mod)[,50]
sqrt(sum(coef(ridge.mod)[-1,50]^2))
ridge.mod$lambda[60]
coef(ridge.mod)[,60]
sqrt(sum(coef(ridge.mod)[-1,60]^2))
predict(ridge.mod,s=50,type="coefficients")[1:20,]
set.seed(1)
train=sample(1:nrow(x), nrow(x)/2)
test=(-train)
y.test=y[test]
ridge.mod=glmnet(x[train,],y[train],alpha=0,lambda=grid, thresh=1e-12)
ridge.pred=predict(ridge.mod,s=4,newx=x[test,])
mean((ridge.pred-y.test)^2)
mean((mean(y[train])-y.test)^2)
ridge.pred=predict(ridge.mod,s=1e10,newx=x[test,])
mean((ridge.pred-y.test)^2)
ridge.pred=predict(ridge.mod,s=0,newx=x[test,],exact=T)
mean((ridge.pred-y.test)^2)
lm(y~x, subset=train)
predict(ridge.mod,s=0,exact=T,type="coefficients")[1:20,]
set.seed(1)
cv.out=cv.glmnet(x[train,],y[train],alpha=0)
plot(cv.out)
bestlam=cv.out$lambda.min
bestlam
ridge.pred=predict(ridge.mod,s=bestlam,newx=x[test,])
mean((ridge.pred-y.test)^2)
out=glmnet(x,y,alpha=0)
predict(out,type="coefficients",s=bestlam)[1:20,]

# The Lasso

lasso.mod=glmnet(x[train,],y[train],alpha=1,lambda=grid)
plot(lasso.mod)
set.seed(1)
cv.out=cv.glmnet(x[train,],y[train],alpha=1)
plot(cv.out)
bestlam=cv.out$lambda.min
lasso.pred=predict(lasso.mod,s=bestlam,newx=x[test,])
mean((lasso.pred-y.test)^2)
out=glmnet(x,y,alpha=1,lambda=grid)
lasso.coef=predict(out,type="coefficients",s=bestlam)[1:20,]
lasso.coef
lasso.coef[lasso.coef!=0]


# Chapter 6 Lab 3: PCR and PLS Regression

# Principal Components Regression

library(pls)
set.seed(2)
pcr.fit=pcr(Salary~., data=Hitters,scale=TRUE,validation="CV")
summary(pcr.fit)
validationplot(pcr.fit,val.type="MSEP")
set.seed(1)
pcr.fit=pcr(Salary~., data=Hitters,subset=train,scale=TRUE, validation="CV")
validationplot(pcr.fit,val.type="MSEP")
pcr.pred=predict(pcr.fit,x[test,],ncomp=7)
mean((pcr.pred-y.test)^2)
pcr.fit=pcr(y~x,scale=TRUE,ncomp=7)
summary(pcr.fit)

# Partial Least Squares

set.seed(1)
pls.fit=plsr(Salary~., data=Hitters,subset=train,scale=TRUE, validation="CV")
summary(pls.fit)
validationplot(pls.fit,val.type="MSEP")
pls.pred=predict(pls.fit,x[test,],ncomp=2)
mean((pls.pred-y.test)^2)
pls.fit=plsr(Salary~., data=Hitters,scale=TRUE,ncomp=2)
summary(pls.fit)



# Chapter 7 Lab: Non-linear Modeling

library(ISLR)
attach(Wage)

# Polynomial Regression and Step Functions

fit=lm(wage~poly(age,4),data=Wage)
coef(summary(fit))
fit2=lm(wage~poly(age,4,raw=T),data=Wage)
coef(summary(fit2))
fit2a=lm(wage~age+I(age^2)+I(age^3)+I(age^4),data=Wage)
coef(fit2a)
fit2b=lm(wage~cbind(age,age^2,age^3,age^4),data=Wage)
agelims=range(age)
age.grid=seq(from=agelims[1],to=agelims[2])
preds=predict(fit,newdata=list(age=age.grid),se=TRUE)
se.bands=cbind(preds$fit+2*preds$se.fit,preds$fit-2*preds$se.fit)
par(mfrow=c(1,2),mar=c(4.5,4.5,1,1),oma=c(0,0,4,0))
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Degree-4 Polynomial",outer=T)
lines(age.grid,preds$fit,lwd=2,col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)
preds2=predict(fit2,newdata=list(age=age.grid),se=TRUE)
max(abs(preds$fit-preds2$fit))
fit.1=lm(wage~age,data=Wage)
fit.2=lm(wage~poly(age,2),data=Wage)
fit.3=lm(wage~poly(age,3),data=Wage)
fit.4=lm(wage~poly(age,4),data=Wage)
fit.5=lm(wage~poly(age,5),data=Wage)
anova(fit.1,fit.2,fit.3,fit.4,fit.5)
coef(summary(fit.5))
(-11.983)^2
fit.1=lm(wage~education+age,data=Wage)
fit.2=lm(wage~education+poly(age,2),data=Wage)
fit.3=lm(wage~education+poly(age,3),data=Wage)
anova(fit.1,fit.2,fit.3)
fit=glm(I(wage>250)~poly(age,4),data=Wage,family=binomial)
preds=predict(fit,newdata=list(age=age.grid),se=T)
pfit=exp(preds$fit)/(1+exp(preds$fit))
se.bands.logit = cbind(preds$fit+2*preds$se.fit, preds$fit-2*preds$se.fit)
se.bands = exp(se.bands.logit)/(1+exp(se.bands.logit))
preds=predict(fit,newdata=list(age=age.grid),type="response",se=T)
plot(age,I(wage>250),xlim=agelims,type="n",ylim=c(0,.2))
points(jitter(age), I((wage>250)/5),cex=.5,pch="|",col="darkgrey")
lines(age.grid,pfit,lwd=2, col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)
table(cut(age,4))
fit=lm(wage~cut(age,4),data=Wage)
coef(summary(fit))

# Splines

library(splines)
fit=lm(wage~bs(age,knots=c(25,40,60)),data=Wage)
pred=predict(fit,newdata=list(age=age.grid),se=T)
plot(age,wage,col="gray")
lines(age.grid,pred$fit,lwd=2)
lines(age.grid,pred$fit+2*pred$se,lty="dashed")
lines(age.grid,pred$fit-2*pred$se,lty="dashed")
dim(bs(age,knots=c(25,40,60)))
dim(bs(age,df=6))
attr(bs(age,df=6),"knots")
fit2=lm(wage~ns(age,df=4),data=Wage)
pred2=predict(fit2,newdata=list(age=age.grid),se=T)
lines(age.grid, pred2$fit,col="red",lwd=2)
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Smoothing Spline")
fit=smooth.spline(age,wage,df=16)
fit2=smooth.spline(age,wage,cv=TRUE)
fit2$df
lines(fit,col="red",lwd=2)
lines(fit2,col="blue",lwd=2)
legend("topright",legend=c("16 DF","6.8 DF"),col=c("red","blue"),lty=1,lwd=2,cex=.8)
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Local Regression")
fit=loess(wage~age,span=.2,data=Wage)
fit2=loess(wage~age,span=.5,data=Wage)
lines(age.grid,predict(fit,data.frame(age=age.grid)),col="red",lwd=2)
lines(age.grid,predict(fit2,data.frame(age=age.grid)),col="blue",lwd=2)
legend("topright",legend=c("Span=0.2","Span=0.5"),col=c("red","blue"),lty=1,lwd=2,cex=.8)

# GAMs

gam1=lm(wage~ns(year,4)+ns(age,5)+education,data=Wage)
library(gam)
gam.m3=gam(wage~s(year,4)+s(age,5)+education,data=Wage)
par(mfrow=c(1,3))
plot(gam.m3, se=TRUE,col="blue")
plot.gam(gam1, se=TRUE, col="red")
gam.m1=gam(wage~s(age,5)+education,data=Wage)
gam.m2=gam(wage~year+s(age,5)+education,data=Wage)
anova(gam.m1,gam.m2,gam.m3,test="F")
summary(gam.m3)
preds=predict(gam.m2,newdata=Wage)
gam.lo=gam(wage~s(year,df=4)+lo(age,span=0.7)+education,data=Wage)
plot.gam(gam.lo, se=TRUE, col="green")
gam.lo.i=gam(wage~lo(year,age,span=0.5)+education,data=Wage)
library(akima)
plot(gam.lo.i)
gam.lr=gam(I(wage>250)~year+s(age,df=5)+education,family=binomial,data=Wage)
par(mfrow=c(1,3))
plot(gam.lr,se=T,col="green")
table(education,I(wage>250))
gam.lr.s=gam(I(wage>250)~year+s(age,df=5)+education,family=binomial,data=Wage,subset=(education!="1. < HS Grad"))
plot(gam.lr.s,se=T,col="green")



# Chapter 8 Lab: Decision Trees

# Fitting Classification Trees

library(tree)
library(ISLR)
attach(Carseats)
High=ifelse(Sales<=8,"No","Yes")
Carseats=data.frame(Carseats,High)
tree.carseats=tree(High~.-Sales,Carseats)
summary(tree.carseats)
plot(tree.carseats)
text(tree.carseats,pretty=0)
tree.carseats
set.seed(2)
train=sample(1:nrow(Carseats), 200)
Carseats.test=Carseats[-train,]
High.test=High[-train]
tree.carseats=tree(High~.-Sales,Carseats,subset=train)
tree.pred=predict(tree.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
(86+57)/200
set.seed(3)
cv.carseats=cv.tree(tree.carseats,FUN=prune.misclass)
names(cv.carseats)
cv.carseats
par(mfrow=c(1,2))
plot(cv.carseats$size,cv.carseats$dev,type="b")
plot(cv.carseats$k,cv.carseats$dev,type="b")
prune.carseats=prune.misclass(tree.carseats,best=9)
plot(prune.carseats)
text(prune.carseats,pretty=0)
tree.pred=predict(prune.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
(94+60)/200
prune.carseats=prune.misclass(tree.carseats,best=15)
plot(prune.carseats)
text(prune.carseats,pretty=0)
tree.pred=predict(prune.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
(86+62)/200

# Fitting Regression Trees

library(MASS)
set.seed(1)
train = sample(1:nrow(Boston), nrow(Boston)/2)
tree.boston=tree(medv~.,Boston,subset=train)
summary(tree.boston)
plot(tree.boston)
text(tree.boston,pretty=0)
cv.boston=cv.tree(tree.boston)
plot(cv.boston$size,cv.boston$dev,type='b')
prune.boston=prune.tree(tree.boston,best=5)
plot(prune.boston)
text(prune.boston,pretty=0)
yhat=predict(tree.boston,newdata=Boston[-train,])
boston.test=Boston[-train,"medv"]
plot(yhat,boston.test)
abline(0,1)
mean((yhat-boston.test)^2)

# Bagging and Random Forests

install.packages("randomForest",dependencies=TRUE)
library(randomForest)
set.seed(1)
bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,importance=TRUE)
bag.boston
yhat.bag = predict(bag.boston,newdata=Boston[-train,])
plot(yhat.bag, boston.test)
abline(0,1)
mean((yhat.bag-boston.test)^2)
bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,ntree=25)
yhat.bag = predict(bag.boston,newdata=Boston[-train,])
mean((yhat.bag-boston.test)^2)
set.seed(1)
rf.boston=randomForest(medv~.,data=Boston,subset=train,mtry=6,importance=TRUE)
yhat.rf = predict(rf.boston,newdata=Boston[-train,])
mean((yhat.rf-boston.test)^2)
importance(rf.boston)
varImpPlot(rf.boston)

# Boosting

install.packages("gbm",dependencies=TRUE)
library(gbm)
set.seed(1)
boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=5000,interaction.depth=4)
summary(boost.boston)
par(mfrow=c(1,2))
plot(boost.boston,i="rm")
plot(boost.boston,i="lstat")
yhat.boost=predict(boost.boston,newdata=Boston[-train,],n.trees=5000)
mean((yhat.boost-boston.test)^2)
boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=5000,interaction.depth=4,shrinkage=0.2,verbose=F)
yhat.boost=predict(boost.boston,newdata=Boston[-train,],n.trees=5000)
mean((yhat.boost-boston.test)^2)



# Chapter 9 Lab: Support Vector Machines

# Support Vector Classifier

set.seed(1)
x=matrix(rnorm(20*2), ncol=2)
y=c(rep(-1,10), rep(1,10))
x[y==1,]=x[y==1,] + 1
plot(x, col=(3-y))
dat=data.frame(x=x, y=as.factor(y))
library(e1071)
svmfit=svm(y~., data=dat, kernel="linear", cost=10,scale=FALSE)
plot(svmfit, dat)
svmfit$index
summary(svmfit)
svmfit=svm(y~., data=dat, kernel="linear", cost=0.1,scale=FALSE)
plot(svmfit, dat)
svmfit$index
set.seed(1)
tune.out=tune(svm,y~.,data=dat,kernel="linear",ranges=list(cost=c(0.001, 0.01, 0.1, 1,5,10,100)))
summary(tune.out)
bestmod=tune.out$best.model
summary(bestmod)
xtest=matrix(rnorm(20*2), ncol=2)
ytest=sample(c(-1,1), 20, rep=TRUE)
xtest[ytest==1,]=xtest[ytest==1,] + 1
testdat=data.frame(x=xtest, y=as.factor(ytest))
ypred=predict(bestmod,testdat)
table(predict=ypred, truth=testdat$y)
svmfit=svm(y~., data=dat, kernel="linear", cost=.01,scale=FALSE)
ypred=predict(svmfit,testdat)
table(predict=ypred, truth=testdat$y)
x[y==1,]=x[y==1,]+0.5
plot(x, col=(y+5)/2, pch=19)
dat=data.frame(x=x,y=as.factor(y))
svmfit=svm(y~., data=dat, kernel="linear", cost=1e5)
summary(svmfit)
plot(svmfit, dat)
svmfit=svm(y~., data=dat, kernel="linear", cost=1)
summary(svmfit)
plot(svmfit,dat)

# Support Vector Machine

set.seed(1)
x=matrix(rnorm(200*2), ncol=2)
x[1:100,]=x[1:100,]+2
x[101:150,]=x[101:150,]-2
y=c(rep(1,150),rep(2,50))
dat=data.frame(x=x,y=as.factor(y))
plot(x, col=y)
train=sample(200,100)
svmfit=svm(y~., data=dat[train,], kernel="radial",  gamma=1, cost=1)
plot(svmfit, dat[train,])
summary(svmfit)
svmfit=svm(y~., data=dat[train,], kernel="radial",gamma=1,cost=1e5)
plot(svmfit,dat[train,])
set.seed(1)
tune.out=tune(svm, y~., data=dat[train,], kernel="radial", ranges=list(cost=c(0.1,1,10,100,1000),gamma=c(0.5,1,2,3,4)))
summary(tune.out)
table(true=dat[-train,"y"], pred=predict(tune.out$best.model,newx=dat[-train,]))

# ROC Curves

install.packages("ROCR",dependencies=TRUE)
library(ROCR)
rocplot=function(pred, truth, ...){
  predob = prediction(pred, truth)
  perf = performance(predob, "tpr", "fpr")
  plot(perf,...)}
svmfit.opt=svm(y~., data=dat[train,], kernel="radial",gamma=2, cost=1,decision.values=T)
fitted=attributes(predict(svmfit.opt,dat[train,],decision.values=TRUE))$decision.values
par(mfrow=c(1,2))
rocplot(fitted,dat[train,"y"],main="Training Data")
svmfit.flex=svm(y~., data=dat[train,], kernel="radial",gamma=50, cost=1, decision.values=T)
fitted=attributes(predict(svmfit.flex,dat[train,],decision.values=T))$decision.values
rocplot(fitted,dat[train,"y"],add=T,col="red")
fitted=attributes(predict(svmfit.opt,dat[-train,],decision.values=T))$decision.values
rocplot(fitted,dat[-train,"y"],main="Test Data")
fitted=attributes(predict(svmfit.flex,dat[-train,],decision.values=T))$decision.values
rocplot(fitted,dat[-train,"y"],add=T,col="red")

# SVM with Multiple Classes

set.seed(1)
x=rbind(x, matrix(rnorm(50*2), ncol=2))
y=c(y, rep(0,50))
x[y==0,2]=x[y==0,2]+2
dat=data.frame(x=x, y=as.factor(y))
par(mfrow=c(1,1))
plot(x,col=(y+1))
svmfit=svm(y~., data=dat, kernel="radial", cost=10, gamma=1)
plot(svmfit, dat)

# Application to Gene Expression Data

library(ISLR)
names(Khan)
dim(Khan$xtrain)
dim(Khan$xtest)
length(Khan$ytrain)
length(Khan$ytest)
table(Khan$ytrain)
table(Khan$ytest)
dat=data.frame(x=Khan$xtrain, y=as.factor(Khan$ytrain))
out=svm(y~., data=dat, kernel="linear",cost=10)
summary(out)
table(out$fitted, dat$y)
dat.te=data.frame(x=Khan$xtest, y=as.factor(Khan$ytest))
pred.te=predict(out, newdata=dat.te)
table(pred.te, dat.te$y)



# Chapter 10 Lab 1: Principal Components Analysis

states=row.names(USArrests)
states
names(USArrests)
apply(USArrests, 2, mean)
apply(USArrests, 2, var)
pr.out=prcomp(USArrests, scale=TRUE)
names(pr.out)
pr.out$center
pr.out$scale
pr.out$rotation
dim(pr.out$x)
biplot(pr.out, scale=0)
pr.out$rotation=-pr.out$rotation
pr.out$x=-pr.out$x
biplot(pr.out, scale=0)
pr.out$sdev
pr.var=pr.out$sdev^2
pr.var
pve=pr.var/sum(pr.var)
pve
plot(pve, xlab="Principal Component", ylab="Proportion of Variance Explained", ylim=c(0,1),type='b')
plot(cumsum(pve), xlab="Principal Component", ylab="Cumulative Proportion of Variance Explained", ylim=c(0,1),type='b')
a=c(1,2,8,-3)
cumsum(a)


# Chapter 10 Lab 2: Clustering

# K-Means Clustering

set.seed(2)
x=matrix(rnorm(50*2), ncol=2)
x[1:25,1]=x[1:25,1]+3
x[1:25,2]=x[1:25,2]-4
km.out=kmeans(x,2,nstart=20)
km.out$cluster
plot(x, col=(km.out$cluster+1), main="K-Means Clustering Results with K=2", xlab="", ylab="", pch=20, cex=2)
set.seed(4)
km.out=kmeans(x,3,nstart=20)
km.out
plot(x, col=(km.out$cluster+1), main="K-Means Clustering Results with K=3", xlab="", ylab="", pch=20, cex=2)
set.seed(3)
km.out=kmeans(x,3,nstart=1)
km.out$tot.withinss
km.out=kmeans(x,3,nstart=20)
km.out$tot.withinss

# Hierarchical Clustering

hc.complete=hclust(dist(x), method="complete")
hc.average=hclust(dist(x), method="average")
hc.single=hclust(dist(x), method="single")
par(mfrow=c(1,3))
plot(hc.complete,main="Complete Linkage", xlab="", sub="", cex=.9)
plot(hc.average, main="Average Linkage", xlab="", sub="", cex=.9)
plot(hc.single, main="Single Linkage", xlab="", sub="", cex=.9)
cutree(hc.complete, 2)
cutree(hc.average, 2)
cutree(hc.single, 2)
cutree(hc.single, 4)
xsc=scale(x)
plot(hclust(dist(xsc), method="complete"), main="Hierarchical Clustering with Scaled Features")
x=matrix(rnorm(30*3), ncol=3)
dd=as.dist(1-cor(t(x)))
plot(hclust(dd, method="complete"), main="Complete Linkage with Correlation-Based Distance", xlab="", sub="")


# Chapter 10 Lab 3: NCI60 Data Example

# The NCI60 data

library(ISLR)
nci.labs=NCI60$labs
nci.data=NCI60$data
dim(nci.data)
nci.labs[1:4]
table(nci.labs)

# PCA on the NCI60 Data

pr.out=prcomp(nci.data, scale=TRUE)
Cols=function(vec){
  cols=rainbow(length(unique(vec)))
  return(cols[as.numeric(as.factor(vec))])
}
par(mfrow=c(1,2))
plot(pr.out$x[,1:2], col=Cols(nci.labs), pch=19,xlab="Z1",ylab="Z2")
plot(pr.out$x[,c(1,3)], col=Cols(nci.labs), pch=19,xlab="Z1",ylab="Z3")
summary(pr.out)
plot(pr.out)
pve=100*pr.out$sdev^2/sum(pr.out$sdev^2)
par(mfrow=c(1,2))
plot(pve,  type="o", ylab="PVE", xlab="Principal Component", col="blue")
plot(cumsum(pve), type="o", ylab="Cumulative PVE", xlab="Principal Component", col="brown3")

# Clustering the Observations of the NCI60 Data

sd.data=scale(nci.data)
par(mfrow=c(1,3))
data.dist=dist(sd.data)
plot(hclust(data.dist), labels=nci.labs, main="Complete Linkage", xlab="", sub="",ylab="")
plot(hclust(data.dist, method="average"), labels=nci.labs, main="Average Linkage", xlab="", sub="",ylab="")
plot(hclust(data.dist, method="single"), labels=nci.labs,  main="Single Linkage", xlab="", sub="",ylab="")
hc.out=hclust(dist(sd.data))
hc.clusters=cutree(hc.out,4)
table(hc.clusters,nci.labs)
par(mfrow=c(1,1))
plot(hc.out, labels=nci.labs)
abline(h=139, col="red")
hc.out
set.seed(2)
km.out=kmeans(sd.data, 4, nstart=20)
km.clusters=km.out$cluster
table(km.clusters,hc.clusters)
hc.out=hclust(dist(pr.out$x[,1:5]))
plot(hc.out, labels=nci.labs, main="Hier. Clust. on First Five Score Vectors")
table(cutree(hc.out,4), nci.labs)