文書の過去の版を表示しています。
とりあえず配付資料をアップロード。今年度はちゃんとしたノートになっているのは第10回目以降のみ。他については昨年度のノートや掲げた参考書の参照を薦める。
配付資料
第10回: 中間試験
第11回: 二項分布と幾何分布と負の二項分布
休講(出張)
第12回: ポアソン分布と指数分布とガンマ分布
第13回: 正規分布
第14回: 各種不等式と大数の法則と中心極限定理
中間試験(4)
1.
1.
Pr[Z=k]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=k|Y=1]
+ Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=k|Y=1]
+ Pr[X=3] * Pr[Y=1|X=3] * Pr[Z=k|Y=1]
+ Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=k|Y=2]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=k|Y=2]
+ Pr[X=3] * Pr[Y=2|X=3] * Pr[Z=k|Y=2]
+ Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=k|Y=3]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=k|Y=3]
+ Pr[X=3] * Pr[Y=3|X=3] * Pr[Z=k|Y=3]
Pr[Z=1]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=1|Y=1]
+ Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=1|Y=1]
+ Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=1|Y=2]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=1|Y=2]
+ Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=1|Y=3]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=1|Y=3]
= (8/10) * (1/10) * (6/10)
+ (2/10) * (6/10) * (6/10)
+ (8/10) * (3/10) * (2/10)
+ (2/10) * (3/10) * (2/10)
+ (8/10) * (6/10) * (1/10)
+ (2/10) * (1/10) * (1/10)
= (48+72+48+12+48+2)/1000
= 230/1000
Pr[Z=2]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=2|Y=1]
+ Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=2|Y=1]
+ Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=2|Y=2]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=2|Y=2]
+ Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=2|Y=3]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=2|Y=3]
= (8/10) * (1/10) * (3/10)
+ (2/10) * (6/10) * (3/10)
+ (8/10) * (3/10) * (6/10)
+ (2/10) * (3/10) * (6/10)
+ (8/10) * (6/10) * (3/10)
+ (2/10) * (1/10) * (3/10)
= (24+36+144+36+144+6)/1000
= 390/1000
Pr[Z=3]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=3|Y=1]
+ Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=3|Y=1]
+ Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=3|Y=2]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=3|Y=2]
+ Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=3|Y=3]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=3|Y=3]
= (8/10) * (1/10) * (1/10)
+ (2/10) * (6/10) * (1/10)
+ (8/10) * (3/10) * (2/10)
+ (2/10) * (3/10) * (2/10)
+ (8/10) * (6/10) * (6/10)
+ (2/10) * (1/10) * (6/10)
= (8+12+48+12+288+12)/1000
= 380/1000
| Z=1 | Z=2 | Z=3
Prob | 23/100 | 39/100 | 38/100
| 0.23 | 0.39 | 0.38
2.
Pr[X=i|Z=k]
= Pr[X=i, Y=1|Z=k]+ Pr[X=i, Y=2|Z=k]+ Pr[X=i, Y=3|Z=k]
= Pr[X=i] * Pr[Y=1|X=i] * Pr[Z=k|Y=1] / Pr[Z=k]
+ Pr[X=i] * Pr[Y=2|X=i] * Pr[Z=k|Y=2] / Pr[Z=k]
+ Pr[X=i] * Pr[Y=3|X=i] * Pr[Z=k|Y=3] / Pr[Z=k]
Pr[X=1|Z=1]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=1|Y=1] / Pr[Z=1]
+ Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=1|Y=2] / Pr[Z=1]
+ Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=1|Y=3] / Pr[Z=1]
= (8/10) * (1/10) * (6/10) / Pr[Z=1]
+ (8/10) * (3/10) * (2/10) / Pr[Z=1]
+ (8/10) * (6/10) * (1/10) / Pr[Z=1]
= (48+48+48) / Pr[Z=1] / 1000
= 144 / Pr[Z=1] / 1000
Pr[X=2|Z=1]
= Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=1|Y=1] / Pr[Z=1]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=1|Y=2] / Pr[Z=1]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=1|Y=3] / Pr[Z=1]
= (2/10) * (6/10) * (6/10) / Pr[Z=1]
+ (2/10) * (3/10) * (2/10) / Pr[Z=1]
+ (2/10) * (1/10) * (1/10) / Pr[Z=1]
= (72+12+2) / Pr[Z=1] / 1000
= 86 / Pr[Z=1] / 1000
144 / Pr[Z=1] / 1000
+ 86 / Pr[Z=1] / 1000 = 1
Z=1 | X=1 | X=2
Prob | 144/230 | 86/230
| 0.626087 | 0.373913
3.
Pr[Y=j|Z=k]
= Pr[X=1, Y=j|Z=k]+ Pr[X=2, Y=j|Z=k]
= Pr[X=1] * Pr[Y=j|X=1] * Pr[Z=k|Y=j] / Pr[Z=k]
+ Pr[X=2] * Pr[Y=j|X=2] * Pr[Z=k|Y=j] / Pr[Z=k]
Pr[Y=1|Z=1]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=1|Y=1] / Pr[Z=1]
+ Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=1|Y=1] / Pr[Z=1]
= (8/10) * (1/10) * (6/10) / Pr[Z=1]
+ (2/10) * (6/10) * (6/10) / Pr[Z=1]
= (48+72) / Pr[Z=1] / 1000
= 120 / Pr[Z=1] / 1000
Pr[Y=2|Z=1]
= Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=1|Y=2] / Pr[Z=1]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=1|Y=2] / Pr[Z=1]
= (8/10) * (3/10) * (2/10) / Pr[Z=1]
+ (2/10) * (3/10) * (2/10) / Pr[Z=1]
= (48+12) / Pr[Z=1] / 1000
= 60 / Pr[Z=1] / 1000
Pr[Y=3|Z=1]
= Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=1|Y=3] / Pr[Z=1]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=1|Y=3] / Pr[Z=1]
= (8/10) * (6/10) * (1/10) / Pr[Z=1]
+ (2/10) * (1/10) * (1/10) / Pr[Z=1]
= (48+2) / Pr[Z=1] / 1000
= 50 / Pr[Z=1] / 1000
120 / Pr[Z=1] / 1000
+ 60 / Pr[Z=1] / 1000
+ 50 / Pr[Z=1] / 1000 = 1
Z=1 | Y=1 | Y=2 | Y=3
Prob | 120/230 | 60/230 | 50/230
E[Y|Z=1] = (1*12+2*6+3*5)/23
= 39/23
= 1.695652
中間試験(5)
1.
1.
Pr[Z=k]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=k|Y=1]
+ Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=k|Y=1]
+ Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=k|Y=2]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=k|Y=2]
+ Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=k|Y=3]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=k|Y=3]
Pr[Z=1]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=1|Y=1]
+ Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=1|Y=1]
+ Pr[X=3] * Pr[Y=1|X=3] * Pr[Z=1|Y=1]
+ Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=1|Y=2]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=1|Y=2]
+ Pr[X=3] * Pr[Y=2|X=3] * Pr[Z=1|Y=2]
+ Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=1|Y=3]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=1|Y=3]
+ Pr[X=3] * Pr[Y=3|X=3] * Pr[Z=1|Y=3]
= (8/10) * (6/10) * (7/10)
+ (1/10) * (0/10) * (7/10)
+ (1/10) * (0/10) * (7/10)
+ (8/10) * (3/10) * (1/10)
+ (1/10) * (6/10) * (1/10)
+ (1/10) * (0/10) * (1/10)
+ (8/10) * (1/10) * (1/10)
+ (1/10) * (4/10) * (1/10)
+ (1/10) *(10/10) * (1/10)
= (336+0+0+24+6+0+8+4+10)/1000
= 388/1000
Pr[Z=2]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=2|Y=1]
+ Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=2|Y=1]
+ Pr[X=3] * Pr[Y=1|X=3] * Pr[Z=2|Y=1]
+ Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=2|Y=2]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=2|Y=2]
+ Pr[X=3] * Pr[Y=2|X=3] * Pr[Z=2|Y=2]
+ Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=2|Y=3]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=2|Y=3]
+ Pr[X=3] * Pr[Y=3|X=3] * Pr[Z=2|Y=3]
= (8/10) * (6/10) * (2/10)
+ (1/10) * (0/10) * (2/10)
+ (1/10) * (0/10) * (2/10)
+ (8/10) * (3/10) * (7/10)
+ (1/10) * (6/10) * (7/10)
+ (1/10) * (0/10) * (7/10)
+ (8/10) * (1/10) * (2/10)
+ (1/10) * (4/10) * (2/10)
+ (1/10) *(10/10) * (2/10)
= (96+0+0+168+42+0+16+8+20)/1000
= 350/1000
Pr[Z=3]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=3|Y=1]
+ Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=3|Y=1]
+ Pr[X=3] * Pr[Y=1|X=3] * Pr[Z=3|Y=1]
+ Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=3|Y=2]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=3|Y=2]
+ Pr[X=3] * Pr[Y=2|X=3] * Pr[Z=3|Y=2]
+ Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=3|Y=3]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=3|Y=3]
+ Pr[X=3] * Pr[Y=3|X=3] * Pr[Z=3|Y=3]
= (8/10) * (6/10) * (1/10)
+ (1/10) * (0/10) * (1/10)
+ (1/10) * (0/10) * (1/10)
+ (8/10) * (3/10) * (2/10)
+ (1/10) * (6/10) * (2/10)
+ (1/10) * (0/10) * (2/10)
+ (8/10) * (1/10) * (7/10)
+ (1/10) * (4/10) * (7/10)
+ (1/10) *(10/10) * (7/10)
= (1000-388-350)/1000
= 262/1000
| Z=1 | Z=2 | Z=3
Prob | 388/1000 | 350/1000 | 262/1000
| 0.388 | 0.350 | 0.262
2.
Pr[X=i|Z=k]
= Pr[X=i, Y=1|Z=k]+ Pr[X=i, Y=2|Z=k]+ Pr[X=i, Y=3|Z=k]
= Pr[X=i] * Pr[Y=1|X=i] * Pr[Z=k|Y=1] / Pr[Z=k]
+ Pr[X=i] * Pr[Y=2|X=i] * Pr[Z=k|Y=2] / Pr[Z=k]
+ Pr[X=i] * Pr[Y=3|X=i] * Pr[Z=k|Y=3] / Pr[Z=k]
Pr[X=1|Z=1]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=1|Y=1] / Pr[Z=1]
+ Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=1|Y=2] / Pr[Z=1]
+ Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=1|Y=3] / Pr[Z=1]
= (8/10) * (6/10) * (7/10) / Pr[Z=1]
+ (8/10) * (0/10) * (1/10) / Pr[Z=1]
+ (8/10) * (0/10) * (1/10) / Pr[Z=1]
= 336 / Pr[Z=1] / 1000
Pr[X=2|Z=1]
= Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=1|Y=1] / Pr[Z=1]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=1|Y=2] / Pr[Z=1]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=1|Y=3] / Pr[Z=1]
= (1/10) * (3/10) * (7/10) / Pr[Z=1]
+ (1/10) * (6/10) * (1/10) / Pr[Z=1]
+ (1/10) * (0/10) * (1/10) / Pr[Z=1]
= (21+6) / Pr[Z=1] / 1000
= 27 / Pr[Z=1] / 1000
Pr[X=3|Z=1]
= Pr[X=3] * Pr[Y=1|X=3] * Pr[Z=1|Y=1] / Pr[Z=1]
+ Pr[X=3] * Pr[Y=2|X=3] * Pr[Z=1|Y=2] / Pr[Z=1]
+ Pr[X=3] * Pr[Y=3|X=3] * Pr[Z=1|Y=3] / Pr[Z=1]
= (1/10) * (1/10) * (7/10) / Pr[Z=1]
+ (1/10) * (4/10) * (1/10) / Pr[Z=1]
+ (1/10) *(10/10) * (1/10) / Pr[Z=1]
= (7+4+10) / Pr[Z=1] / 1000
= 21 / Pr[Z=1] / 1000
336 / Pr[Z=1] / 1000
+ 27 / Pr[Z=1] / 1000
+ 21 / Pr[Z=1] / 1000 = 1
Z=1 | X=1 | X=2 | X=3
Prob | 336/384 | 27/384 | 21/384
| 0.875 | 0.0703125 | 0.0546875
3.
Pr[Y=j|Z=k]
= Pr[X=1, Y=j|Z=k]+ Pr[X=2, Y=j|Z=k]
= Pr[X=1] * Pr[Y=j|X=1] * Pr[Z=k|Y=j] / Pr[Z=k]
+ Pr[X=2] * Pr[Y=j|X=2] * Pr[Z=k|Y=j] / Pr[Z=k]
+ Pr[X=3] * Pr[Y=j|X=3] * Pr[Z=k|Y=j] / Pr[Z=k]
Pr[Y=1|Z=1]
= Pr[X=1] * Pr[Y=1|X=1] * Pr[Z=1|Y=1] / Pr[Z=1]
+ Pr[X=2] * Pr[Y=1|X=2] * Pr[Z=1|Y=1] / Pr[Z=1]
+ Pr[X=3] * Pr[Y=1|X=3] * Pr[Z=1|Y=1] / Pr[Z=1]
= (8/10) * (6/10) * (7/10) / Pr[Z=1]
+ (1/10) * (0/10) * (7/10) / Pr[Z=1]
+ (1/10) * (0/10) * (7/10) / Pr[Z=1]
= 336 / Pr[Z=1] / 1000
Pr[Y=2|Z=1]
= Pr[X=1] * Pr[Y=2|X=1] * Pr[Z=1|Y=2] / Pr[Z=1]
+ Pr[X=2] * Pr[Y=2|X=2] * Pr[Z=1|Y=2] / Pr[Z=1]
+ Pr[X=3] * Pr[Y=2|X=3] * Pr[Z=1|Y=2] / Pr[Z=1]
= (8/10) * (3/10) * (1/10) / Pr[Z=1]
+ (1/10) * (6/10) * (1/10) / Pr[Z=1]
+ (1/10) * (0/10) * (1/10) / Pr[Z=1]
= (24+6) / Pr[Z=1] / 1000
= 30 / Pr[Z=1] / 1000
Pr[Y=3|Z=1]
= Pr[X=1] * Pr[Y=3|X=1] * Pr[Z=1|Y=3] / Pr[Z=1]
+ Pr[X=2] * Pr[Y=3|X=2] * Pr[Z=1|Y=3] / Pr[Z=1]
+ Pr[X=3] * Pr[Y=3|X=3] * Pr[Z=1|Y=3] / Pr[Z=1]
= (8/10) * (1/10) * (1/10) / Pr[Z=1]
+ (1/10) * (4/10) * (1/10) / Pr[Z=1]
+ (1/10) *(10/10) * (1/10) / Pr[Z=1]
= (8+4+10) / Pr[Z=1] / 1000
= 22 / Pr[Z=1] / 1000
336 / Pr[Z=1] / 1000
+ 30 / Pr[Z=1] / 1000
+ 22 / Pr[Z=1] / 1000 = 1
Z=1 | Y=1 | Y=2 | Y=3
Prob | 336/388 | 30/336 | 22/336
E[Y|Z=1] = (1*336+2*30+3*22)/336
= 462/336
= 154/112
= 77/56
= 11/8
= 1.375
モーメントの求め方
直接計算
原点モーメントは、離散分布なら
<jsmath> m_k=E\left[X^k\right]=\int_{-\infty}^{\infty} x^k p\left(x\right)dx </jsmath>
連続分布なら
<jsmath> m_k=E\left[X^k\right]=\sum_{x=-\infty}^{\infty} x^k p\left(x\right) </jsmath>
で計算する。
中心モーメントは、1次の中心モーメントは
<jsmath> \mu=\mu_1=m_1-m_1=0 </jsmath>
2次の中心モーメント(分散)は
<jsmath> \sigma^2=\mu_2=m_2-{m_1}^2 </jsmath>
3次の中心モーメントは
<jsmath> \mu_3=m_3-3m_2m_1+2{m_1}^3 </jsmath>
など。
モーメント母関数からの計算
<jsmath> M_X\left(t\right) = E\left[\exp\left(tX\right)\right] </jsmath>
が与えられていれば、
<jsmath> m_k = \left.\frac{d^k}{dt^k}M_X\left(t\right)\right|_{t=0} </jsmath>
で求めることができる。代入して不定になるなら、
<jsmath> m_k = \lim_{t\rightarrow 0}\frac{d^k}{dt^k}M_X\left(t\right) </jsmath>
をロピタルの定理を用いて求める。ロピタルの定理は
<jsmath> \lim_{t\rightarrow 0}{a\left(t\right)} = \lim_{t\rightarrow 0}{b\left(t\right)} = 0 \,\, \pm \infty </jsmath>
のときに、
<jsmath> \lim_{t\rightarrow 0}\frac{a^\prime \left(t\right)}{b^\prime \left(t\right)} </jsmath>
が有限の値に収束するなら、
<jsmath> \lim_{t\rightarrow 0}\frac{a\left(t\right)}{b\left(t\right)} = \lim_{t\rightarrow 0}\frac{a^\prime \left(t\right)}{b^\prime \left(t\right)} </jsmath>
となる、という定理である。
他の分布からの計算
モーメント母関数からも確認できる関係。
- 互いに独立に同一のベルヌーイ分布に従うn個の確率変数の和の分布は二項分布に従う(ベルヌーイ分布の和は二項分布)
- 互いに独立に同一の幾何分布に従うn個の確率変数の和の分布は負の二項分布に従う(幾何分布の和は負の二項分布)
- 互いに独立に同一の指数分布に従うn個の確率変数の和の分布はアーラン分布に従う(指数分布の和はアーラン分布)
- 互いに独立に相異なる正規分布に従うn個の確率変数でも、その和の分布は正規分布に従う(正規分布の和は正規分布)
- アーラン分布はガンマ分布と同等
- χ2乗分布はガンマ分布と同等
- 発生間隔が指数分布に従う事象の、一定期間の発生回数はポアソン分布に従う
他にも関係はあるけど、とりあえずこれぐらい。